Sunday, May 20, 2018

Graphs, Correlation and Causality

A week ago I started to read “The book of why: the science of cause and effects" by Judea Pearl. (see also his website). This is part of my search for new mathematics for describing entangled hydrological and ecological processes (see also this post and links therein). It is a dissemination book and not intended to grow too technical. However, it arrives the moment when understanding technicalities becomes part of the full understanding, if you do not want to remain a tourist of the new knowledge and become instead an active user of it. Pearl says he dedicated most of his research life to these problems and, therefore, pretending to fill the gap in few weeks is a nonsense.
I require more time to go deeper but presently I have no time. Therefore let me take some annotations here for making easier future efforts. 
To go to the details, one can go to the more technical book by Pearl himself, Causality. However, it happened I went to browse some chapters of the very good Shalizi's book on statistics. Chapters from the 20th are a reasonable starting point. Shalizi book itself is not fully explicative but a compromise where some theorems are not deminstrated but assumed and make explicit. Nice enough but requiring in any case the appropriate dedication. Shalizi seems to be a voracious reader, and in the bibliography of his chapter 21, he cites some fundamentals work to put in line for a full understanding the topic. His subsequent chapters also enlarge the vision to information theory, and is connections between the science of causal statistics. Cool. While postponing the study and trying to grasp concepts, I fully report the bibliography I came across here below (mostly from Shalizi's).
All of these are also a good reading for those who believe that data science is a practice which springs out from nowhere.


  • Chalak, K., & White, H. (2012). Causality, Conditional Independence, an Graphical Separation in Settable Systems. Neural Computation, 1–60.
  • Cover, Thomas M. and Joy A. Thomas (2006). Elements of Information Theory. New York: John Wiley, 2nd edn.
  • Dinno, A. (2017). An Introduction to the Loop Analysis of Qualitatively Specified Complex Causal Systems (pp. 1–23).
  • Guttorp, Peter (1995). Stochastic Modeling of Scientific Data. London: Chapman and Hall.
  • Jordan, Michael I. (ed.) (1998). Learning in Graphical Models, Dordrecht. Kluwer Academic.
  • Kindermann, Ross and J. Laurie Snell (1980). Markov Random Fields and their Ap- plications. Providence, Rhode Island: American Mathematical Society. URL
  • Lauritzen, S.L., Dawid, A.P., Larsen, B.N., Leimer, H.G. (1990), Independence properties of directed Markov fields, Networks, 20, 491-505
  • Lauritzen, S.L. (1996) Graphical Models. New York: Oxford University Press.
  • Loehlin, John C. (1992). Latent Variable Models: An Introduction to Factor, Path, and Structural Analysis. Hillsdale, New Jersey: Lawrence Erlbaum Associates, 2nd edn.
  • Moran, P. A. P. (1961). “Path Coefficients Reconsidered.” Australian Journal of Statis- tics, 3: 87–93. doi:10.1111/j.1467-842X.1961.tb00314.x.
  • Pearl, J. (2000). Causality- Models, Reasoning, and Inference (pp. 1–386). Cambridge University Press.
  • Wright,S., The Method of Path Coefficients. Annals of Mathematical Statistics 5:161-215.
  • Wysocki, W. (1992). “Mathematical Foundations of Multivariate Path Analysis.” In- ventiones Mathematicae, 21: 387–397. URL

Thursday, May 17, 2018

A little on soil physics

This shows the lectures I gave this week on soil and soil water to my class of hydrology.


Texture and structure of soils


Darcy and Buckingham laws

Saturday, May 12, 2018

Aqueducts YouTube Videos

Here they are the videos of the aqueducts lectures.


Distribution Network Topologies

Distribution Network Equations
Design requirements

Verification of the design

Tuesday, May 8, 2018

Adige's Research and publications

This post is to contain research work and studies about river Adige as soon as they come to my attention. Please help me in finding them.


Master Thesis
Ph.D. Thesis

Saturday, May 5, 2018

GEOframe documentation standards

We announce that, parallel to this blog, it was just opened an OSF project called GEOframe that contains the complete documentation of the various components developed. Information will continue, however, to appear here too.
GEOframe is already a big tree and it will grow more and more. Click on the Figure to access the documentation site. Each OMS component will have its OMS subproject and the subproject itself contains as standard:
  • The link to the component  source code (the URL of Github site where developers and programmer can download the code)
  • Github executable with examples (the Github - GeoframeComponents site where to download a working example including the executables)
  • A link to the Component's documentation  
  • Jupiter Notebooks: illustrating the examples' I/O
  • R: Not available Yet: but the same as above but the same as above in R
  • GEOframe blog page: point to the page where is further documented the component (essentially this information should be the one summarised in the Wiki page of the OSF component's page

Thursday, April 19, 2018

Medium term important questions in hydrology

This is part of the IAHS initiative in identifying some important questions in today's hydrology. As you know from the previous post, I made my eleven question questions. From the colleagues who participated to the call they received a decent agreement. However, during the phase of thinking, there was a refocusing (which I believe was useful) and a request to look to topics or issues that could be answered or solved in a few years. More specific, less oriented to basic questions.
This brought to a different set of questions (whose formulation I did not participated actively). Finally, Gunther Blöschl (GS) writes about the final screening that happened at the Wien Symposium: "On Saturday we had three rounds of discussions in four break out groups and one final plenary discussion. In each round we discussed the questions, merged them, split them and reworded them as needed followed by a voting on prioritising the questions. The voting was for gold/silver/bronze/remove in each of the three break out group rounds. Only the gold and silver ones were retained for the plenary with an additional round of voting (by the entire plenary) for gold, silver or removing them from the list. The idea of the process was to whittle down the 260 questions initially proposed to a more coherent and smaller set of those questions deemed most important by the participants. The process resulted in 16 gold and 29 silver questions which are posted here. "
I think it is important to see what was chosen to have a poll about what the community (mostly the European one?) thinks it is important, even if, maybe, not fundamental.

On spatial interpolation

Introduction to spatial interpolation (slides here)

Kriging rational (slides here)

A little more on (semi)variogram (slides here)
More material on the main page.